The universality of period-doubling bifurcations in certain two-dimensional reversible areapreserving mappings with quadratic nonlinearity

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1983 J. Phys. A: Math. Gen. 16 L137
(http://iopscience.iop.org/0305-4470/16/5/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 06:50

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The universality of period-doubling bifurcations in certain two-dimensional reversible area-preserving mappings with quadratic nonlinearity

Koo-Chul Lee
Department of Physics, Seoul National University, Seoul 151, Korea

Received 18 January 1983

Abstract

We show that all the period-doubling bifurcation sequences of two-dimensional one-parameter reversible area-preserving mappings of a certain form with quadratic nonlinearity are equivalent. Two such sequences are calculated according to the theory developed by the author for the explicit demonstration of the equivalence.

There have been several period-doubling bifurcation sequences, often called the Feigenbaum sequence after his discovery of such a sequence in 10 mappings (Feigenbaum 1978,1979), for the 2 D area-preserving one-parameter mapping with a quadratic nonlinearity, studied and reported (Bountis 1981, Greene et al 1981, Helleman 1980). The universality of such a bifurcation scheme is recognised and the universal constants are estimated from the sequences. However, it has not been recognised that these sequences are actually equivalent to each other, let alone universal.

In this letter we point out that all the one-parameter mappings with quadratic nonlinearity are equivalent to each other in the sense that there is one-to-one or one-to-two correspondence. This implies that all the Feigenbaum sequences of the one-parameter mappings with quadratic nonlinearity are equivalent. As an explicit demonstration, we present two independently calculated Feigenbaum sequences of quadratic mappings of different kinds according to the theory developed by the author (Lee and Choi 1983).

We used in the following the form given in the paper by the author (Lee and Choi 1983) for the 2D area-preserving mappings as

$$
T=\left\{\begin{array}{l}
x_{n+1}=-y_{n}+2 h\left(x_{n}\right) \tag{1}\\
y_{n+1}=x_{n} .
\end{array}\right.
$$

This mapping becomes Helleman's standard quadratic mapping (Helleman 1980) if we choose for $h(x)$

$$
\begin{equation*}
h_{\mathrm{HL}}(x)=c x+x^{2} \tag{2}
\end{equation*}
$$

De Vogelaere's quadratic mapping (Greene et al 1981) if we choose

$$
\begin{equation*}
h_{\mathrm{DV}}(x)=p x-(1-p) x^{2}, \tag{3}
\end{equation*}
$$

and Hénon's quadratic mapping (Bountis 1981) if we choose for $h(x)$

$$
\begin{equation*}
h_{\mathrm{HN}}(x)=\frac{1}{2}\left(1-a x^{2}\right) . \tag{4}
\end{equation*}
$$

As pointed out by Helleman (1981), a quadratic nonlinearity is unchanged by a translation of the origin. If we choose the origin at the fixed point of period 1 , we can write the $h(x)$ of equation (1) in the form

$$
\begin{equation*}
h(x)=p x+q(p) x^{2} \tag{5}
\end{equation*}
$$

where $q(p)$ is some function of p. If we rescale x and y by

$$
\xi=q(p) x \quad \eta=q(p) y
$$

the mapping (1) can be brought into Helleman's standard form

$$
\xi_{n+1}=-\eta_{n}+h\left(\xi_{n}\right) \quad \eta_{n+1}=\xi_{n},
$$

with $h(x)=h_{\mathrm{HL}}(x)$ of equation (2).

Table 1. Feigenbaum sequence of period-doubling bifurcations of Hénon's quadratic mapping, (1) and (4) on the symmetry line $x=\frac{1}{2}\left(1-a y^{2}\right)$ with accumulation point $a_{c}=$ 4.136166....
(a) Parameter values at which the n-period orbit becomes unstable $\left(\phi_{n}^{\prime}\left(y_{n}^{*}\right)=-2\right)$, $\phi_{n}^{\prime}\left(y_{n}^{*}\right)$, the initial points on the symmetry line.

k	$n=2^{k}$	a_{k}	$\phi_{n}^{\prime}\left(a_{k}, y_{n}^{*}\right)$	x_{n}^{*}	y_{n}^{*}
0	1	+3.000000000000	-2.000000000000	+0.333333333333	+0.333333333333
1	2	+4.000000000000	-2.000000000000	+0.500000000000	+0.000000000000
2	4	+4.120452497319	-1.999999999991	+0.492637586768	+0.059779549344
3	8	+4.134363912468	-2.000000001230	+0.495893250224	+0.044571758452
4	16	+4.135960058811	-2.000000003680	+0.495180967141	+0.048273276101
5	32	+4.136143097399	-2.000000058700	+0.495364528249	+0.047343917327
6	64	+4.136164085605	-1.999999990600	+0.495319292500	+0.047574241131
7	128	+4.136166492190	-2.000107064000	+0.495330584451	+0.047516807529
8	256	+4.136166768178	-1.999586740000	+0.495327776999	+0.047531088365
9	512	+4.136166799826	-1.984365790000	+0.495328472923	+0.047527548192

Table 1(b). Sequences leading scaling constants $\delta, \alpha, \beta . T^{n / 4}$ iteration of the pair of the fixed points on the symmetry line is the pair bifurcated off the symmetry line from the $\frac{1}{2} n$ period orbit. They always bifurcate parallel to the x axis (Lee et al 1983). In the above
$\delta_{k}=\left(a_{k-1}-a_{k}\right) /\left(a_{k}-a_{k+1}\right), \quad \alpha_{k+1 / 2}=\left[y_{n}^{*}-y^{n / 2}\left(x_{n}^{*} y_{n}^{*}\right)\right] /\left[y_{2 n}^{*}-y^{n}\left(x_{2 n}^{*} y_{2 n}^{*}\right)\right]$
$\beta_{k+1 / 2}=\left[x^{n / 4}\left(x_{n}^{*}, y_{n}^{*}\right)-x^{3 n / 4}\left(x_{n}^{*}, y_{n}^{*}\right)\right] /\left[x^{n / 2}\left(x_{2 n}^{*}, y_{2 n}^{*}\right)-x^{3 n / 2}\left(x_{2 n}^{*}, y_{2 n}^{*}\right)\right]$
where $x^{m}\left(x_{n}^{*}, y_{n}^{*}\right)$ is the x component of $P^{m} ; P^{m}=T^{m}\left(x_{n}^{*}, y_{n}^{*}\right)$.

k	$n=2^{k}$	δ_{k}	α_{k}	β_{k}
1	2	+8.302027955067	-4.1820321956760	
2	4	+8.658536606728	-4.0245668804350	+16.3809165107200
3	8	+8.715626364719	-4.0202659624780	+16.3740361076700
4	16	+8.720272377757	-4.0181271709880	+16.3631734224000
5	32	+8.721021129676	-4.0181141281800	+16.3643258668600
6	64	+8.721157158380	-4.0180003019390	+16.3635455700000
7	128	+8.719889995217	-4.0185745418890	+16.3662279996100
8	256	+8.720551061678	-4.0290294348210	+16.4091869060200
9	512			

For example, the Feigenbaum sequence of the bifurcation parameters p_{n} and n-period fixed points, $P_{n}^{* D V}$ for the De Vogelaere mapping can be obtained by

$$
p_{n}=c_{n} \quad P_{n}^{* \mathrm{DV}}=-P_{n}^{* \mathrm{HL}} /\left(1-c_{n}\right),
$$

from the Feigenbaum sequence for Helleman's standard mapping, $\left\{c_{n}\right\},\left\{P_{n}^{* H L}\right\}$, where $P_{n}=\left(x_{n}^{*}, y_{n}^{*}\right)$.

Similarly the Feigenbaum sequence of Helleman's standard mapping can be obtained from that of Hénon's quadratic mapping by

$$
\begin{equation*}
c_{n}^{ \pm}=1 \pm\left(1+a_{n}\right)^{1 / 2} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{n}^{* \pm \mathrm{HL}}=-\frac{1}{2} a_{n} P_{n}^{* \mathrm{HN}}-\frac{1}{2} c_{n}^{ \pm} . \tag{7}
\end{equation*}
$$

In fact, a single Feigenbaum sequence studied by Bountis (1981) gives rise to double Feigenbaum sequences of Helleman (1980), which are called mirrors of each other by Helleman.

Table 2. Feigenbaum sequence of period-doubling bifurcations of Helleman's mapping (1) and (2) on the symmetry line $x=c y+y^{2}$ with accumulation point $c_{c}^{-}=-1.266311 \ldots$ The 'mirror-Feigenbaum' sequence exists at $c_{c}^{+}=2-c_{c}^{-}=3.266311 \ldots$ These are related to a_{c} of Hénon's by $c_{c}^{ \pm}=1 \pm\left(1+a_{c}\right)^{1 / 2}$. Although these sequences are calculated independently, they can be obtained from the sequences of table 1 via equations (6) and (7). (a) and (b) are similar to (a) and (b) of table 1 except that the a 's are replaced by the $c^{-,}$s.
(a).

k	$n=2^{k}$	c_{k}^{-}	$\phi_{n}^{\prime}\left(a_{k}, y_{n}^{*}\right)$	x_{n}^{*}	y_{n}^{*}
0	1	-1.000000000000	-2.000000000000	+0.000000000000	+0.000000000000
1	2	-1.236067977500	-2.000000000000	-0.381966011250	+0.618033988750
2	4	-1.262841686314	-2.000000000001	-0.383524044179	+0.508261446465
3	8	-1.265913483006	-2.000000001600	-0.392144837579	+0.540818806676
4	16	-1.266265663776	-2.000000002570	-0.390891519103	+0.533304660957
5	32	-1.266306046720	-2.000000011200	-0.391296263742	+0.535242414909
6	64	-1.266310677203	-2.000000412300	-0.391205595662	+0.534767904765
7	128	-1.266311208151	-1.999987191000	-0.391229278205	+0.534886886943
8	256	-1.266311269040	-1.999579680000	-0.391223510787	+0.534857380530
9	512	-1.266311276022	-2.015570330000	-0.391224965702	+0.534864762325

(b).

k	$n=2^{k}$	δ_{k}	α_{k}	β_{k}
1	2	+8.817156380537	-4.0597795493300	
2	4	+8.715976836530	-4.0110249131630	+16.3257975805000
3	8	+8.722215843869	-4.0187144648400	+16.3677170517000
4	16	+8.721027619977	-4.0179494187710	+16.3624497579200
5	32	+8.721108359538	-4.0180931064670	+16.3642414130700
6	64	+8.721161017651	-4.0180866978960	+16.3638523360500
7	128	+8.719932992823	-4.0183814657760	+16.3651383854300
8	256	+8.720853623604	-4.0066078831480	+16.3139593908600
9	512			

In tables 1 and 2, we present Feigenbaum sequences of the Hénon mapping (4) and Helleman's mapping (2) on the dominant symmetry line $x=h^{\mathrm{HN} / \mathrm{HL}}(y)$ calculated according to the theory developed by the authors (see Lee and Choi 1983). They are indeed related to each other by the relations (6) and (7). In addition to the usual sequences leading to the universal scaling constant α, δ as well as the parameter sequence, the sequences leading to the second scaling constant β are formed. This is the sequence of the ratios of differences in the x components of n-period fixed points bifurcated off the symmetry line which is the $T^{n / 4}$ image of the pair of fixed points bifurcated on the symmetry line as shown by the author (see Lee et al 1983). At low periods, the sequences appear quite different because the transformations (6) and (7) are not simple. Because of the extreme sensitivity of the stability criteria of high periods on the parameter (at period $n=2^{9}=512$, one part in 10^{13} in the parameter value (keeping 10^{-13} for the accuracy of the fixed point) affects about one part in 100 in the value of $\phi_{n}^{\prime}\left(y_{n}^{*}\right)$ which is related to the residue ' R ' by $-2 R$ (see Lee and Choi 1983)), the accuracy of the scaling constants $\delta_{k}, \alpha_{k}, \boldsymbol{\beta}_{k}$ at higher periods should not be taken too seriously.

I wish to acknowledge the support of the Ministry of Education, Republic of Korea through a grant to the Research Institute for Basic Sciences, Seoul National University.

References

Bountis T C 1981 Physica 3D 577
Feigenbaum M J 1978 J. Stat. Phys. 1925

- 1979 J. Stat. Phys. 21669

Greene J M, MacKay R S, Vivaldi F and Feigenbaum M J 1981 Physica 3D 468
Helleman R H G 1980 Fundamental Problems in Statistical Mechanics vol 5, ed E G D Cohen (Amsterdam: North-Holland) p 165
1981 in Nonequilibrium Problems in Statistical Mechanics vol 2, ed W Horton, L Riechl and V Szebehely (New York: Wiley)
Lee K C and Choi D K 1983 J. Phys. A: Math. Gen. 16 L55-60
Lee K C et al 1983 Preprint

