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LE'ITER TO THE EDITOR 

The universality of period-doubling bifurcations in certain 
two-dimensional reversible area-preserving mappings with 
quadratic nonlinearity 

Koo-Chul Lee 
Department of Physics, Seoul National University, Seoul 151, Korea 

Received 18 January 1983 

Abstract. We show that all the period-doubling bifurcation sequences of two-dimensional 
one-parameter reversible area-preserving mappings of a certain form with quadratic 
nonlinearity are equivalent. Two such sequences are calculated according to the theory 
developed by the author for the explicit demonstration of the equivalence. 

There have been several period-doubling bifurcation sequences, often called the 
Feigenbaum sequence after his discovery of such a sequence in ID mappings (Feigen- 
baum 1978,1979), for the 2~ area-preserving one-parameter mapping with a quadratic 
nonlinearity, studied and reported (Bountis 1981, Greene et a1 1981, Helleman 1980). 
The universality of such a bifurcation scheme is recognised and the universal constants 
are estimated from the sequences. However, it has not been recognised that these 
sequences are actually equivalent to each other, let alone universal. 

In this letter we point out that all the one-parameter mappings with quadratic 
nonlinearity are equivalent to each other in the sense that there is one-to-one or 
one-to-two correspondence. This implies that all the Feigenbaum sequences of the 
one-parameter mappings with quadratic nonlinearity are equivalent. As an explicit 
demonstration, we present two independently calculated Feigenbaum sequences of 
quadratic mappings of different kinds according to the theory developed by the author 
(Lee and Choi 1983). 

We used in the following the form given in the paper by the author (Lee and 
Choi 1983) for the 2~ area-preserving mappings as 

xfl+1= - y f l + 2 h ( x f l )  T = {  
yfl+1= X".  

This mapping becomes Helleman's standard quadratic mapping (Helleman 1980) if 
we choose for h ( x )  

(2) 
2 

h H L ( X )  = cx + x  , 
De Vogelaere's quadratic mapping (Greene el a1 1981) if we choose 

h , v ( x )  = p x  -(I - P ) X 2 ,  

hHN(X) = 2 ( 1 - a x 2 ) .  

(3 1 
and Henon's quadratic mapping (Bountis 1981) if we choose for h (x) 

(4) 
1 

0 1983 The Institute of Physics L137 



L138 letter to the Editor 

As pointed out by Helleman (1981), a quadratic nonlinearity is unchanged by a 
translation of the origin. If we choose the origin at the fixed point of period 1, we 
can write the h ( x )  of equation (1) in the form 

h ( x )  = p x  + q ( p ) x 2  (5)  

where q ( p )  is some function of p. If we rescale x and y by 

5 = q ( P ) x  77 = 4 ( P ) y ,  

the mapping (1) can be brought into Helleman's standard form 

E n + l  = - q n  + h ( 5 n )  q n + l =  E n ,  

with h ( x )  = h H L ( x )  of equation (2 ) .  

Table 1. Feigenbaum sequence of period-doubling bifurcations of Htnon's quadratic 
mapping, (1) and (4) on the symmetry line x =i(1-ay2) with accumulation point a== 
4.136166.. . . 

(a) Parameter values at which the n-period orbit becomes unstable (dL(y:) = -2), 
d:(yx), the initial points on the symmetry line. 

k n = 2 '  ak d:(ak, Y : )  x: Y :  

0 1  
1 2  
2 4  
3 8  
4 16 
5 32 
6 64 
7 128 
8 256 
9 512 

+3.000 000 000 000 
+4.000 000 000 000 
+4.120 452 497 319 
+4.134 363 912 468 
+4.135 960058 811 
+4.136 143 097 399 
+4.136 164 085 605 
+4.136 166 492 190 
+4.136 166 768 178 
+4.136 166 799 826 

-2.000 000 000 000 
-2.000 000 000 000 
-1.999 999 999 991 
-2.000 000 001 230 
-2.000 000 003 680 
-2.000 000 058 700 
-1.999 999 990 600 
-2.000 107 064 000 
-1.999 586 740 000 
-1.984 365 790 000 

+0.333 333 333 333 
+OS00 000 000 000 
+0.492 637 586 768 
+0.495 893 250 224 
+0.495 180967 141 
1-0.495 364 528 249 
+0.495 319 292 500 
+0.495 330 584 451 
+0.495 327 776 999 
+0.495 328 472 923 

+0.333 333 333 333 
+o.ooo 000 000 000 
+0.059 779 549 344 
+0.044 571 758 452 
+0.048 273 276 101 
+0.047 343 917 327 
+0.047 574 241 131 
+0.047 516 807 529 
+0.047 5 3 1  088 365 
+0.047 527 548 192 

Table l (b) .  Sequences leading scaling constants 6, a, p. T"I4 iteration of the pair of the 
fixed points on the symmetry line is the pair bifurcated off the symmetry line from the in 
period orbit. They always bifurcate parallel to the x axis (Lee et a[ 1983). In the above 

where x"(x:, y:) is the x component of P";P" = T"(x:, y:). 

k n=2 '  6 k  a k  Dk 

1 2 +8.302 027 955 067 -4.182 032 195 6760 
2 4 +8.658 536 606 728 -4.024 566 880 4350 +16.380 916 510 7200 
3 8 +8.715 626 364 719 -4.020 265 962 4780 +16.374 036 107 6700 
4 16 +8.720 272 377 757 -4.018 127 170 9880 +16.363 173 422 4000 
5 32 +8.721021 129 676 -4.018 114 128 1800 C16.364 325 866 8600 
6 64 +8.721 157 158 380 -4.018 000 301 9390 +16.363 545 570 0000 
7 128 +8.719 889 995 217 -4.018 574 541 8890 +16.366 227 999 6100 
8 256 +8.720 551 061 678 -4.029 029 434 8210 +16.409 186 906 0200 
9 512 
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For example, the Feigenbaum sequence of the bifurcation parameters pn and 
n-period fixed points, P:DV for the De Vogelaere mapping can be obtained by 

Pn = Cn P:DV = -P:”“/(l-cn)’ 

from the Feigenbaum sequence for Helleman’s standard mapping, {G}, {PRHL}, where 

Similarly the Feigenbaum sequence of Helleman’s standard mapping can be 
Pn = ( x : ,  Y : ) *  

obtained from that of H6non’s quadratic mapping by 

c; =l*( l+an)”*  (6) 

In fact, a single Feigenbaum sequence studied by Bountis (1981) gives rise to double 
Feigenbaum sequences of Helleman (1980), which are called mirrors of each other 
by Helleman. 

Table 2. Feigenbaum sequence of period-doubling bifurcations of Helleman’s mapping 
(1) and (2) on the symmetry line x = c y  + y 2  with accumulation point c ,  = -1.266311 . . . . 
The ‘mirror-Feigenbaum’ sequence exists at c,’ = 2-c; = 3.266311 . . . . These are 
related to a, of HCnon’s by c l  = 1 f (1 + aC)ll2.  Although these sequences are calculated 
independently, they can be obtained from the sequences of table 1 via equations (6) and 
(7). (a) and (6) are similar to (a) and (b )  of table 1 except that the a’s are replaced by 
the c-’s. 

( a ) .  

k n = 2 ‘  
~ 

0 1  
1 2  
2 4  
3 8  
4 16 
5 32 
6 64 
7 128 
8 256 
9 512 

~ 

-1.000 000 000 000 
-1.236 067 977 500 
-1.262 841 686 314 
-1.265 913 483 006 
-1.266 265 663 776 
-1.266 306 046 720 
-1.266 310677 203 
-1.266 311 208 151 
-1.266311 269040 
-1.266 311 276 022 

~~~~ ~ 

-2.000 000 000 000 
-2.000 000 000 000 
-2.000 000 000 001 
-2.000 000 001 600 
-2.000 000 002 570 
-2.000 000 011 200 
-2.000 000 412 300 
-1.999 987 191 000 
-1.999 579 680 000 
-2.015 570 330 000 

X,* 

+o.ooo 000 000 000 
-0.381 966 011 250 
-0.383 524 044 179 
-0.392 144 837 579 
-0.390891 519 103 
-0.391 296 263 742 
-0.391 205 595 662 
-0.391 229 278 205 
-0.391 223 510 787 
-0.391 224 965 702 

Y i  

+o.ooo 000 000 000 
+0.618 033 988 750 
+0.508 261 446 465 
+0.540 818 806 676 

+OS35 242 414 909 
+OS34 767 904 765 
c0.534 886 886 943 
+0.534 857 380 530 
+0.534 864 762 325 

+OS33 304 660 957 

( b ) .  

k n = 2 k  Sk f f k  @k 

1 2 
2 4 
3 8 
4 16 
5 32 
6 64 
7 128 
8 256 
9 512 

+8.817 156 380 537 
+8.715 976 836 530 
+8.722 215 843 869 
1-8.721 027 619 977 
+8.721 108 359 538 
+8.721 161 017 651 
+8.719 932 992 823 
+8.720 853 623 604 

-4.059 779 549 3300 
-4.011 024 913 1630 
-4.018 714 464 8400 
-4.017 949 418 7710 
-4.018 093 106 4670 
-4.018 086 697 8960 
-4.018 381 465 7760 
-4.006 607 883 1480 

+16.325 797 580 5000 
+16.367 717 051 7000 
+16.362 449 757 9200 
+16.364 241 413 0700 
+16.363 852 336 0500 
+16.365 138 385 4300 
+16.313 959 390 8600 
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In tables 1 and 2, we present Feigenbaum sequences of the HCnon mapping (4) 
and Helleman’s mapping (2) on the dominant symmetry line x = hHN’HL(y) calculated 
according to the theory developed by the authors (see Lee and Choi 1983). They are 
indeed related to each other by the relations (6) and (7). In addition to the usual 
sequences leading to the universal scaling constant a, S as well as the parameter 
sequence, the sequences leading to the second scaling constant p are formed. This 
is the sequence of the ratios of differences in the x components of n-period fixed 
points bifurcated off the symmetry line which is the T”’4 image of the pair of fixed 
points bifurcated on the symmetry line as shown by the author (see Lee et a1 1983). 
At low periods, the sequences appear quite different because the transformations (6) 
and (7) are not simple. Because of the extreme sensitivity of the stability criteria of 
high periods on the parameter (at period n = 29 = 512, one part in 1013 in the parameter 
value (keeping for the accuracy of the fixed point) affects about one part in 100 
in the value of q5A(y?) which is related to the residue ‘R’ by -2R (see Lee and Choi 
1983)), the accuracy of the scaling constants Sk, ak, P k  at higher periods should not 
be taken too seriously. 

I wish to acknowledge the support of the Ministry of Education, Republic of Korea 
through a grant to the Research Institute for Basic Sciences, Seoul National University. 
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